
Polyspace® Code Prover™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Release Notes
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2015a

Simplified workflow for project setup and results review
with a unified user interface . 1-2

Review of code complexity metrics and global variable usage
in user interface . 1-3

Code Complexity Metrics . 1-3
Global Variables . 1-4

Context-sensitive help for code complexity metrics, MISRA-
C:2012, and custom coding rules . 1-5

Detection of stack pointer dereference outside scope 1-5

Review of latest results compared to the last run 1-6

Guidance for reviewing Polyspace Code Prover checks in C
code . 1-7

Improvements in search capability in the user interface . . . 1-7

Isolated ellipsis for variable number of function arguments
supported . 1-8

Improvement in pointer comparisons 1-8

Improvements in coding rules checking 1-9

Simplified results infrastructure . 1-11

Support for GCC 4.8 . 1-11

iv Contents

Polyspace plug-in for Simulink improvements 1-11
Integration with Simulink projects 1-11
DRS file format changed to XML . 1-12
Back-to-model available when Simulink is closed 1-12

Polyspace binaries being removed . 1-12

Import Visual Studio project being removed 1-13

R2014b

Support for MISRA C:2012 . 2-2

Improved verification speed . 2-2

Support for Mac OS . 2-3

Improved verification precision for non-initialized
variables . 2-3

Read Operations on Structures . 2-3
Other Operations . 2-5

Support for C++11 . 2-6

Context-sensitive help for verification options and checks . 2-6

Code Editor for editing source files in Polyspace user
interface . 2-7

Local file-by-file verification . 2-7

Simulink plug-in support for custom project files 2-8

TargetLink support updated . 2-8

AUTOSAR support added . 2-8

New checks for functions not called . 2-9

v

Default verification level changed . 2-9

Improved precision level . 2-10

Default mode changed for C++ code verification in user
interface . 2-11

Updated Software Quality Objectives 2-11

Improved global menu in user interface 2-11

Improved Project Manager perspective 2-12

Changed analysis options . 2-13

Improved Results Manager perspective 2-13

Error mode removed from coding rules checking 2-15

Remote launcher and queue manager renamed 2-15

Polyspace binaries being removed . 2-16

Import Visual Studio project being removed 2-17

R2014a

Automatic project setup from build systems 3-2

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012
dialects . 3-2

Documentation in Japanese . 3-3

Support for additional Coding Rules (MISRA C:2004 Rule
18.2, MISRA C++ Rule 5-0-11) . 3-3

Preferences file moved . 3-3

vi Contents

Support for batch analysis security levels 3-3

Interactive mode for remote verification 3-4

Default text editor . 3-4

Results folder appearance in Project Browser 3-4

Results Manager improvements . 3-6

Simplification of coding rules checking 3-8

Support for Windows 8 and Windows Server 2012 3-9

Check model configuration automatically before analysis . 3-10

Additional back-to-model support for Simulink plug-in . . . 3-10

Function replacement in Simulink plug-in 3-10

Polyspace binaries being removed . 3-11

Improvement of floating point precision 3-11

R2013b

Proven absence of certain run-time errors in C and C++
code . 4-2

Color-coding of run-time errors directly in code 4-2

Calculation of range information for variables, function
parameters and return values . 4-2

Identification of variables exceeding specified range limits 4-3

Quality metrics for tracking conformance to software quality
objectives . 4-3

vii

Web-based dashboard providing code metrics and quality
status . 4-4

Guided review-checking process for classifying results and
run-time error status . 4-4

Graphical display of variable reads and writes 4-5

Comparison with R2013a Polyspace products 4-5

R2015a
Version: 9.3

New Features

Bug Fixes

Compatibility Considerations

R2015a

1-2

Simplified workflow for project setup and results review with a unified
user interface

In R2015a, the Project and Results Manager perspectives are now unified. You can run
verification and review results without switching between two perspectives.

The major changes are:

• You can start a new verification during your results review. Previously, you started a
new verification only from the Project Manager perspective.

• After a verification, the result opens automatically. If you are looking at a previous
result when a verification is over, you can load the new result or retain the previous
one on the Results Summary pane. If you retain the previous results, you can later
open the new results from the Project Browser. The new results are highlighted.

• You can have any of the panes open in the unified interface.

Previously, you could open the following panes only in one of the two perspectives.

Project Manager Results Manager

• Project Browser: Set up project.
• Configuration: Specify analysis

options for your project.
• Output Summary: Monitor progress

of verification.
• Run Log: Find detailed information

about a verification.

• Results Summary: View Polyspace®

results.
• Source: View read-only form of

source code color coded with Polyspace
results.

• Check Details: View details of a
particular result.

• Check Review: Comment on a
particular result.

• Variable Access: View global
variables and read/write operations on
them.

• Call Hierarchy: View callers and
callees of a function.

• Results Properties: Same as Run
Log, but associated with results
instead of a project. This pane has
been removed.

1-3

Project Manager Results Manager

To open the log associated with a
result, with the results open, select
Window > Show/Hide View > Run
Log.

• Settings: Same information as
Configuration, but associated with
results instead of a project. This pane
has been removed.

To open the configuration associated
with a result, with the results open,
select Window > Show/Hide View >
Configuration.

• Orange Sources: View sources of
orange checks.

• Sensitivity Context: For a check
that has a different color for different
function calls, view the check color for
each function call.

Review of code complexity metrics and global variable usage in user
interface

• “Code Complexity Metrics” on page 1-3
• “Global Variables” on page 1-4

Code Complexity Metrics

In R2015a, you can view code complexity metrics in the Polyspace user interface. For
more information, see “Code Metrics”. Previously, this information was available only in
the Polyspace Metrics web interface.

In the user interface, you can:

• Specify a limit for the value of a metric. If the metric value for your source code
exceeds this limit, the metric appears red on the Results Summary pane.

R2015a

1-4

• Justify the value of a metric. If a metric value exceeds specified limits and appears
red, you can add a comment with the rationale.

Combining these actions, you can enforce coding standards across your organization. For
more information, see “Review Code Metrics”.

Reducing the complexity of your code improves code readability, reduces the possibility of
coding errors, and allows more precise Polyspace verification.

Global Variables

In R2015a, you can comment and justify global variable usage on the Results Summary
pane. Previously, you viewed global variable usage on the Variable Access pane, but
could not comment on them.

On the Results Summary pane, global variables are classified into one of the following
categories.

Category Color Meaning

Potentially
unprotected

Orange Global variables
shared between
multiple tasks
but possibly not
protected from
concurrent access by
the tasks

Shared

Protected Green Global variables
shared between
multiple tasks and
protected from
concurrent access by
the tasks

Used Black Global variables
used in a single task

Not shared

Unused Gray Global variables
declared but not
used

For more information, see “Global Variables”.

1-5

For code that you do not intend for multitasking, all variables are nonshared and can be
either used or unused. For code that you intend for multitasking, you can specify tasks
and protections through the analysis options for multitasking. For more information, see
“Multitasking”.

You can still view the global variables on the Variable Access pane.

• To comment and justify potentially unprotected and unused global variables, use the
Results Summary pane.

• To find the read and write operations on a global variable, use the Check Details or
Variable Access pane. On the Variable Access pane, you can also see the variable
range and other information.

For more information, see “Review Global Variable Usage”.

Context-sensitive help for code complexity metrics, MISRA-C:2012, and
custom coding rules

In R2015a, context-sensitive help is available in the user interface for code complexity
metrics, MISRA C®:2012 rule violations, and custom coding rule violations.

To access the contextual help, see “Getting Help”.

For information about these results, see:

• “Code Metrics”
• “MISRA C:2012 Directives and Rules”
• “Custom Coding Rules”

Detection of stack pointer dereference outside scope

In R2015a, the Illegally dereferenced pointer check can detect stack pointer
dereference outside scope. Such dereference can happen, for example, when a pointer to
a variable that is local to a function is returned from the function. Because the scope of
the variable is limited to the function, dereferencing the pointer outside the function can
cause undefined behavior.

This enhancement is not available by default. Use the option -detect-pointer-
escape to detect such dereferences. To provide command-line options in the user
interface:

R2015a

1-6

1 On the Configuration pane, select Advanced Settings.
2 Enter the option in the Other field.

Before R2015a R2015a

In the following code, ptr points to ret.
Because the scope of ret is limited to
func1, when ptr is accessed in func2, the
access is illegal. Polyspace Code Prover™
did not detect such pointer escapes.

void func2(int *ptr) {

 *ptr = 0;

}

int* func1(void) {

 int ret = 0;

 return &ret ;

}

void main(void) {

 int* ptr = func1() ;

 func2(ptr) ;

}

In the following code, Polyspace
Code Prover produces a red Illegally
dereferenced pointer check on *ptr.

void func2(int *ptr) {

 *ptr = 0;

}

int* func1(void) {

 int ret = 0;

 return &ret ;

}

void main(void) {

 int* ptr = func1() ;

 func2(ptr) ;

}

The Check Details pane displays a message indicating that ret is accessed outside its
scope.

Review of latest results compared to the last run

In R2015a, you can review only new results compared to the previous run.

1-7

If you rerun your verification, the new results are displayed with an asterisk (*) against
them on the Results Summary pane. To filter only these new checks, select the New
results box.

If you make changes in your source code, you can use this feature to see only the checks
introduced due to those changes. You can avoid reviewing checks in the source code that
you did not change.

Guidance for reviewing Polyspace Code Prover checks in C code

In R2015a, the context-sensitive help for checks provides guidance about how to review
the check. The help describes:

• Information available in the software for the check.
• In your source code, how to navigate to the root cause of the check.
• Common causes of the check.

To open the context-sensitive help for a check:

• On the Results Summary or Source pane, select the check.
•

Select the button.
• Select the link in the section Diagnosing This Check.

This additional guidance is not available for C++-specific checks.

Improvements in search capability in the user interface

In R2015a, the Search pane allows you to search for a string in various panes of the user
interface.

To search for a string in the new user interface:

1 If the Search pane is not visible, open it. Select Window > Show/Hide View >
Search.

2 Enter your string in the search box.
3 From the drop-down list beside the box, select names of panes you want to search.

The Search pane consolidates the search options previously available.

R2015a

1-8

Isolated ellipsis for variable number of function arguments supported

In R2015a, for C++ code, Polyspace Code Prover supports the ellipsis in the function
definition syntax void foo(...){} to mean variable number of arguments. Previously,
the use of ellipsis in isolation was not supported. You could use only the syntax where the
ellipsis was preceded with other parameters.

Before R2015a R2015a

In the following code, Polyspace considers
that foo has no arguments. Therefore, it
produces a red Correctness condition
error on the second function call. The
Check Details pane indicates that the
wrong number of arguments were used in
the function call.

void foo(...) {

 /* Function body */

}

void main() {

 foo();

 foo(1,2); //Red COR

}

In the following code, Polyspace considers
that foo takes a variable number of
arguments. It does not produce a red
Correctness condition error on the
second function call.

void foo(...) {

 /* Function body */

}

void main() {

 foo();

 foo(1,2); //No COR

}

Improvement in pointer comparisons

In R2015a, Polyspace is more precise on pointer comparisons. In certain cases, if the
software can determine that a pointer comparison is always true or false, it provides that
result. Previously, Polyspace did not check pointer comparisons.

Before R2015a R2015a

In the following code, Polyspace does not
check the comparison ptr==&invalid.
Therefore, it considers that check can
return either 0 or 1. In the main function,
it verifies both branches of the if-else
statement.

#include <stdlib.h>

In the following code, Polyspace checks
the comparison ptr===&invalid
and determines that it is always true.
Therefore, it considers that the if test is
redundant and the function check returns
1 only. In the main function, it verifies the

1-9

Before R2015a R2015a
typedef unsigned char U8;

U8 invalid;

#define TEST_DISABLED &invalid

U8 check(U8 cnt, U8* ptr)

{

 U8 ret=0;

 if (ptr == &invalid)

 {

 ret=1;

 }

 return ret;

}

void main()

{ U8 isDisabled;

 isDisabled = check(1U,TEST_DISABLED);

 if(isDisabled == 1) {

 /* Do not perform test */

 }

 else {

 /* Perform test */

 }

}

if branch and considers the else branch
as unreachable.

#include <stdlib.h>

typedef unsigned char U8;

U8 invalid;

#define TEST_DISABLED &invalid

U8 check(U8 cnt, U8* ptr)

{

 U8 ret=0;

 if(ptr == &invalid)

 {

 ret=1;

 }

 return ret;

}

void main()

{ U8 isDisabled;

 isDisabled = check(1U,TEST_DISABLED);

 if(isDisabled == 1) {

 /* Do not perform test */

 }

 else {

 /* Perform test */

 }

}

Improvements in coding rules checking

MISRA C:2004 and MISRA AC AGC

Rule Number Effect More Information

Rule 12.6 More results on noncompliant
#if preprocessor directives
Fewer results for variables cast
to effective Boolean types.

MISRA C:2004 Rules — Chapter
12: Expressions

Rule 12.12 Fewer results when converting to
an array of float

MISRA C:2004 Rules — Chapter
12: Expressions

R2015a

1-10

MISRA C:2012

Rule Number Effect More Information

Rules 10.3 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.3

Rule 10.4 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results for casts to user-
defined effective Boolean types.

MISRA C:2012 Rule 10.4

Rule 10.5 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.5

Rule 12.1 More results on expressions
with sizeof operator and on
expressions with ? operators.
Fewer results on operators of
the same precedence and in
preprocessing directives.

MISRA C:2012 Rule 12.1

Rule 14.3 No results for non-controlling
expressions.

MISRA C:2012 Rule 14.3

MISRA C++:2008

Rule Number Effect More Information

Rule 5-0-3 Fewer results on enumeration
constants when the type of the
constant is the enumeration type.

MISRA C++ Rules — Chapter 5

Rule 6-5-1 Fewer results on compliant vector
variable iterators.

MISRA C++ Rules — Chapter 6

1-11

Rule Number Effect More Information

Rule 14-8-2 Fewer results for functions
contained in the “Files and
folders to ignore (C++)” option.

MISRA C++ Rules — Chapter 14

Rule 15-3-2 Fewer results for user-defined
return statements after a try
block.

MISRA C++ Rules — Chapter 15

Simplified results infrastructure

Polyspace results folders are reorganized and simplified. Files have been removed,
combined, renamed, or moved. The changes do not affect the results that you see in the
Polyspace environment.

Some important changes and file locations:

• The main results file is now encrypted and renamed ps_results.pscp. You can
view results only in the Polyspace environment.

• The log file, Polyspace_R2015a_project_date-time.log has not changed.

For more information, see Results Folder Contents.

Support for GCC 4.8

Polyspace now supports the GCC 4.8 dialect for C and C++ projects.

To allow GCC 4.8 extensions in your Polyspace Code Prover verification, set Target &
Compiler > Dialect option gnu4.8.

For more information, see “Dialect (C)” and “Dialect (C++)”.

Polyspace plug-in for Simulink improvements

In R2015a, there are three improvements to the Polyspace Simulink® plug-in.

Integration with Simulink projects

You can now save your Polyspace results to a Simulink project. Using this feature, you
can organize and control your Polyspace results alongside your model files and folders.

R2015a

1-12

To save your results to a Simulink project:

1 Open your Simulink project.
2 From your model, select Code > Polyspace > Options.
3 In the Polyspace parameter configuration tab, select the Save results to Simulink

project option.

For more information, see “Save Results to a Simulink Project”.

DRS file format changed to XML

By default, the DRS files generated in Simulink are saved in XML.

For more information, see “XML File Format for Constraints”

If you want to used a customized .txt DRS file, contact customer support.

Back-to-model available when Simulink is closed

In the Polyspace plug-in for Simulink, the back-to-model feature now works even when
your model is closed. When you click a link in your Polyspace results, MATLAB® opens
your Simulink model and highlights the appropriate block.

Note: This feature works only with Simulink R2013b and later.

For more information about the back-to-model feature, see “Identify Errors in Simulink
Models”.

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release. The binaries are
located in matlabroot/polyspace/bin. You get a warning if you run them.

Binary name Use instead

polyspace-automatic -orange-

tester.exe

From the Polyspace environment, select Tools >
Automatic Orange Tester

polyspace-c.exe polyspace-code-prover-nodesktop -lang c

1-13

Binary name Use instead

polyspace-cpp.exe polyspace-code-prover-nodesktop -lang

cpp

polyspace-remote-c.exe polyspace-code-prover-nodesktop -lang c

-batch

polyspace-remote-cpp.exe polyspace-code-prover-nodesktop -lang

cpp -batch

polyspace-remote.exe polyspace-code-prover-nodesktop -batch

polyspace-rl-manager.exe polyspace-server-settings.exe

polyspace-spooler.exe polyspace-job-monitor.exe

polyspace-ver.exe polyspace-code-prover-nodesktop -ver

Import Visual Studio project being removed

The File > Import Visual Studio project will be removed in a future release. Instead,
use the Create from build system option during New Project creation. For more
information, see “Trace Visual Studio Build”.

R2014b
Version: 9.2

New Features

Bug Fixes

Compatibility Considerations

R2014b

2-2

Support for MISRA C:2012

Polyspace can now check your code against MISRA C:2012 directives and coding rules. To
check for MISRA C:2012 coding rule violations:

1 On the Configuration pane, select Coding Rules.
2 Select Check MISRA C:2012.
3 The MISRA C:2012 guidelines have different categories for handwritten and

automatically generated code.

If you want to use the settings for automatically generated code, also select Use
generated code requirements.

For more information about supported rules, see MISRA C:2012 Coding Directives and
Rules.

Improved verification speed

In R2014b, the following two changes improve the verification speed:

• Polyspace Code Prover can run the compilation phase of your verification in parallel
on multiple processors. The software detects available processors and uses them to
compile different source files in parallel.

Previously, the software ran post-compilation phases in parallel but compiled the
source files sequentially. Starting in R2014b, the software can use multiple processors
for the entire verification process.

To explicitly specify the number of processors, use the command-line option -max-
processes. For more information, see -max-processes.

• Polyspace Code Prover has an improved engine for verification. This engine typically
improves verification speed by 25%. However, in some cases, verification can take the
same amount of time or longer.

Compatibility Considerations

In most cases, you do not see significant change in the number of checks resulting from
the improved engine. If you see a major increase in the number of orange checks, contact
technical support. For more information, see Obtain System Information for Technical
Support.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/misra-c2012-coding-rules.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/misra-c2012-coding-rules.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/maxprocesses.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/obtain-configuration-information.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/obtain-configuration-information.html

2-3

Support for Mac OS

You can install and run Polyspace on Mac OS X. Polyspace is supported for Mac OS
10.7.4+, 10.8, and 10.9.

You can use Polyspace Metrics on Safari and set up your Mac as a Metrics server.
However, if you restart your Mac machine that is setup as a Metrics server, you must
restart the Polyspace server daemon.

The Automatic Orange Tester is not supported for Mac.

Improved verification precision for non-initialized variables

Polyspace Code Prover performs the following checks for initialization:

• Non-initialized local variable or NIVL
• Non-initialized variable or NIV

In R2014b, the following changes appear in these checks.

Read Operations on Structures

When you read structured variables, Polyspace Code Prover performs a check for
initialization. This check helps detect partially initialized and non-initialized structures
earlier in the code.

Prior to R2014b R2014b

• When you read structured variable,
a check for initialization was not
performed.

• The checks occurred only when you
read individual fields of a structured
variable, provided the fields themselves
were not structured variables.

When you read structured variables, a
check for initialization occurs. The check
turns:

• Green, if all fields of the structure that
are used are initialized. If no field is
used, the check is green by default.

• Red, if all fields that are used are not
initialized.

• Orange, if only some fields that are
used are initialized. Following the
check, Polyspace considers that the

http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedvariable.html

R2014b

2-4

Prior to R2014b R2014b

uninitialized fields have the full range
of values allowed by their type.

Polyspace considers a field as used if there
is a read or write operation on the field
anywhere in the code. Polyspace does not
check for initialization of fields that are not
used.

To determine which fields Polyspace
checked for initialization:

1 Select the NIV or NIVL check on the
Results Summary pane or Source
pane.

2 View the message on the Check
Details pane.

2-5

Prior to R2014b R2014b

Example:

typedef struct S {

 int a;

 int b;

}S;

void func1(S);

void func2(int);

void main() {

 S varS;

 func1(varS);

 func2(varS.a);

}

A check was not performed when the non-
initialized structure varS was read. When
the field a of varS was read, a red NIVL
check appeared.

Example:

typedef struct S {

 int a;

 int b;

}S;

void func1(S);

void func2(int);

void main() {

 S varS;

 func1(varS);

 func2(varS.a);

}

When the non-initialized structure varS is
read, a red NIVL check appears.

For more examples, see:

• Partially initialized structure — All
used fields initialized

• Partially initialized structure — Some
used fields initialized

Other Operations

The specification of Non-initialized variable checks has changed for the following
operations. These operations are not commonly used. Therefore, it is likely that these
changes do not affect your Polyspace verification.

Prior to R2014b R2014b

If you initialized only the high bits of a
variable through a pointer, an orange
check for initialization appeared when the
variable was read.

If you initialize only the high bits of a
variable through a pointer, a green check
for initialization appears when the variable
is read.

If you performed an operation on a C++
object after it was destroyed, a red check
for initialization appeared on the operation.

If you perform an operation on a C++
object after it is destroyed, the check
for initialization has the same color as

http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buixo7l-1
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buixo7l-1
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buiyntf-1
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buiyntf-1

R2014b

2-6

Prior to R2014b R2014b

The check indicated that the object was
destroyed.

before the destruction. Polyspace does not
introduce a red check on this type of access.

Compatibility Considerations

If you use an earlier version of Polyspace Code Prover, it is possible that you see the
following changes in your results.

• Read operation on structures: You see an increase in the total number of checks.

However, some red or orange NIV or NIVL checks on the fields of structures turn
green. Instead, you see some new red or orange checks on the structures themselves.

• Other operations:

• If you have operations that initialize only the high bits of a variable through a
pointer, you can see a reduction in orange NIV or NIVL checks.

• If you have operations that access an object after it is destroyed, you can see a
reduction in red NIV or NIVL checks.

Support for C++11

Polyspace can now fully analyze C++ code that follows the ISO/IEC 14882:2011 standard,
also called C++11.

Use two new analysis options when analyzing C++11 code. On the Target & Compiler
pane, select:

• C++11 extensions to allow the standard C++11 libraries and functions during your
analysis.

• Block char 16/32_t types to not allow char16_t or char32_t types during the
analysis.

For more information, see C++11 Extensions (C++) and Block char16/32_t types (C++).

Context-sensitive help for verification options and checks

In R2014b, contextual help is available for verification options in the Polyspace interface
and its plug-ins. To view the contextual help:

http://www.mathworks.com/help/releases/R2014b/codeprover/ref/c-11-extensions-c.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/block-char1632-t-types-c.html

2-7

1 Hover your cursor over a verification option in the Configuration pane.
2 Inside the tooltip, select the “More Help” link.

The documentation for that option appears in a dockable window.

Contextual help is available in the Polyspace interface for run-time errors. To view the
contextual help for checks:

1 In the Results Manager perspective, select a run-time error from the results.
2

Inside the Check Details pane, select .

The documentation for that check appears in a docked window.

For more information, see Getting Help.

Code Editor for editing source files in Polyspace user interface

In R2014b, by default, you can edit your source files inside the Polyspace user interface.

• In the Project Manager perspective, on the Project Browser tree, double-click your
source file.

• In the Results Manager perspective, right-click the Source pane and select Open
Source File.

Your source files appear on a Code Editor tab. On this tab, you can edit your source
files and save them.

To use an external text editor, change your preferences.

1 Select Tools > Preferences.
2 Specify an external editor on the Editors tab.

For more information, see Specify External Text Editor.

Local file-by-file verification

In R2014b, you can verify your source code file by file on your local installation of
Polyspace Code Prover. Each file is verified independently of the other files in your
module. Previously, you performed file-by-file verification only on a remote server. The
verification required:

http://www.mathworks.com/help/releases/R2014b/codeprover/gs/getting-help.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/specify-text-editor.html

R2014b

2-8

• Parallel Computing Toolbox™ on the client side
• MATLAB Distributed Computing Server™ on the server side

For more information on file-by-file verification, see:

• Run File-by-File Verification
• Open Results of File-by-File Verification

For information on file-by-file verification in batch mode, see:

• Run File-by-File Batch Verification
• Open Results of File-by-File Batch Verification

Simulink plug-in support for custom project files

With the Polyspace plug-in for Simulink, you can now use a project file to specify the
verification options.

On the Polyspace pane of the Configuration Parameters window, with the Use custom
project file option you can enter a path or browse for a .psprj project file.

For more information, see Configure Polyspace Analysis Options.

TargetLink support updated

The Polyspace plug-in for Simulink now supports TargetLink® 3.4 and 3.5. Older versions
of TargetLink are not supported.

For more information, see TargetLink Considerations.

AUTOSAR support added

In R2013b, the Polyspace plug-in for Simulink added support for AUTOSAR generated
code with Embedded Coder®. If you use autosar.tlc as your System target file
for code generation, when you run Polyspace, the verification can use the data range
information from AUTOSAR.

The Polyspace verification uses the same default options and parameters as it does for
Embedded Coder.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/run-file-by-file-verification-on-user-interface.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/open-results-of-file-by-file-verification-in-user-interface.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/run-file-by-file-remote-verification.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/open-results-of-file-by-file-batch-verification.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/configuring-polyspace-project.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/targetlink-considerations.html

2-9

For more information, see Embedded Coder Considerations.

New checks for functions not called

Two new checks in Polyspace Code Prover detect C/C++ functions that are defined but
not called during execution of the code.

Check Purpose

Function not called Detects functions that are defined but not
called in the source files.

Function not reachable Detects functions that are defined but
called only from an unreachable part of the
source.

You can choose to activate these checks using the following options:

• In the user interface, on the Configuration pane, under Check Behavior, select a
value for the option Detect uncalled functions.

• At the command line, use the option -uncalled-function-checks with an
appropriate argument.

Goal Option Value

Do not detect uncalled functions. none

Detect functions that are defined but not
called.

never-called

Detect functions that are defined and called
only from an unreachable part of the code.

called-from-unreachable

Detect all uncalled functions. all

Default verification level changed

In R2014b, unless you specify a verification level explicitly, Polyspace Code Prover
verification performs two passes on your source code instead of four. For instance:

• In the user interface, on the Output Summary tab, you can see that the verification
continues to Level2. For more passes, on the Configuration pane, under the
Precision node, select a higher Verification level.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/embedded-coder-considerations.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/functionnotcalled.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/functionnotreachable.html

R2014b

2-10

• At the command line, the verification implicitly uses -to pass2. For more passes,
use the -to option explicitly with a higher pass value.

The default verification is completed in much less time.

For more information, see:

• Verification level (C)
• Verification level (C++)

Compatibility Considerations

If you do not specify a verification level explicitly in your polypsace-code-prover-
nodesktop command, your verification runs to Software Safety Analysis Level
2. In most cases, this verification level produces only slightly more orange checks than
Software Safety Analysis Level 4. However, if you see a significant change in
your results, to reproduce your earlier results:

• In the user interface, select Software Safety Analysis Level 4 for
Verification level.

• At the command line, use the option -to pass4 with the polypsace-code-
prover-nodesktop command.

Improved precision level

In R2014b, certain internal limits have been removed from verification that uses a
Precision level of 3. Because of this improvement, you can use this Precision level
to significantly reduce orange checks, especially for multitasking code that uses shared
variables. However, if you use this level, the verification can take significantly longer.

To set Precision level to 3, do one of the following:

• In the user interface, on the Configuration pane, select Precision. From the
Precision level drop-down list, select 3.

• At the DOS or UNIX® command prompt, use the flag -O3 with the polyspace-
code-prover-nodesktop command.

• At the MATLAB command prompt, use the argument '-O3' with the
polyspaceCodeProver function.

For more information, see Precision level (C/C++).

http://www.mathworks.com/help/releases/R2014b/codeprover/ref/verification-level-to.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/verification-level.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ref/precision-level-o.html

2-11

Default mode changed for C++ code verification in user interface

When you create a new Polyspace Code Prover project with C++ as the project language,
the following options are selected in the user interface by default. The options appear on
the Configuration pane under the Code Prover Verification node.

Option Value

Verify Module On
Class all

Functions to call within the specified
classes

unused

Functions to call unused

Variables to initialize uninit

These options replace the default selection of Verify whole application on the
Polyspace user interface.

If your C++ code does not contain a main function, Polyspace generates a main by default
during verification from the user interface.

For more information on the main generation options, see Provide Context for C++ Code
Verification.

Updated Software Quality Objectives

In R2014b, the Software Quality Objectives or SQOs have been updated to include
MISRA® C++: 2008 coding rule violations.

Using the predefined SQO levels, you can specify quality thresholds for your project or
individual files in your project. With the updated SQOs, you can now specify that your
project must not violate certain MISRA C++ rules.

For more information, see Predefined SQO Levels.

Improved global menu in user interface

The global menu in the Polyspace user interface has been updated. The following table
lists the current location for the existing global menu options.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/provide-context-to-c-code-verification.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/provide-context-to-c-code-verification.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/predefined-sqo-levels.html

R2014b

2-12

Goal Prior to R2014b R2014b

Open the Polyspace Metrics
interface in your web
browser.

File > Open Metrics Web
Interface

Metrics > Open Metrics

Upload results from the
Polyspace user interface to
Polyspace Metrics.

File > Upload in
Polyspace Metrics
repository

Metrics > Upload to
Metrics

Update results stored in
Polyspace Metrics with
your review comments and
justifications.

File > Save in Polyspace
Metrics repository

Metrics > Save comments
to Metrics

Generate a report from
results after verification.

Run > Run Report > Run
Report

Reporting > Run Report

Open generated report. Run > Run Report >
Open Report

Reporting > Open Report

Partition source code into
modules.

Run > Run Modularize Tools > Run Modularize

Import review comments
from previous verification.

Review > Import Tools > Import Comments

Specify code generator for
generated code.

Review > Code
Generator Support

Tools > Code Generator
Support

Specify settings that apply
to all Polyspace Code Prover
projects.

Options > Preferences Tools > Preferences

Specify settings for remote
verification.

Options > Metrics and
Remote Server Settings

Metrics > Metrics and
Remote Server Settings

Improved Project Manager perspective

The following changes have been made in the Project Manager perspective:

• The Progress Monitor tab does not exist anymore. Instead, after you start a
verification, you can view its progress on the Output Summary tab.

• Instead of a single progress bar showing all the stages of verification, you can see two
progress bars. The top bar shows progress in the current stage of verification and the
lower bar shows overall progress.

2-13

After verification, you can see the overall time taken. To see the time taken in each
stage of verification, click the icon.

• In the Project Browser, projects appear sorted in alphabetical order instead of order
of creation.

Changed analysis options

Changes have been made to the following analysis options:

• On the Configuration pane, the analysis option Files and folders to ignore has
been moved from Coding Rules Checking to Inputs & Stubbing. The functionality
in Polyspace Code Prover has not changed.

• On the Configuration pane, the Interactive option has been removed from the
graphical interface. To use interactive mode, use the -interactive flag at the
command line or in the Advanced Settings > Other text field.

• You cannot use batch mode or interactive mode with Verification Level > C/C++
source compliance checking.

To run only to code compliance, run Polyspace Code Prover locally.

To perform batch or interactive verifications, use Software Safety Analysis level 0
or higher.

Improved Results Manager perspective

The following changes have been made in the Results Manager perspective:

• On the Source pane, the following code appears in gray:

• Code deactivated due to conditional compilation. Polyspace assigns a lighter shade
of gray to this code.

• Code in an unreachable branch. Polyspace assigns a darker shade of gray to this
code.

R2014b

2-14

For the difference between the two cases, see the code below. To reproduce the
colors, before verification, on the Configuration pane, enter Polyspace= for
Preprocessor definitions.

• To prioritize your orange check review, use the Show menu on the Results
Summary pane. This menu replaces the previously available methodologies for the
same purpose.

• To display red, gray, and orange checks likely to be run-time errors, from the
Show menu, select Critical checks. This option replaces the First checks to
review methodology.

• To display all checks, from the Show menu, select All checks. This option
replaces the All checks methodology.

• The methodologies Methodology for C/C++ > Light and Methodology for C/C+
+ > Moderate have been removed.

2-15

• To create your own subset of orange checks to review, select Tools > Preferences.
On the Review Scope tab, specify the number or percentage of orange checks of
each type to review. The options on this tab replace the options on the Review
Configuration tab.

• To group your checks, use the Group by menu on the Results Summary pane.

• To leave your checks ungrouped, instead of List of Checks, select Group by >
None.

• To group checks by check color and type, instead of Checks by Family, select
Group by > Family.

• To group checks by file and function, instead of Checks by File/Function, select
Group by > File.

• To view the percentage of checks that you have justified, instead of the Review
Statistics pane, use the Justified column on the Results Summary pane. On this
pane:

• To view the percentage of checks that you justified broken down by color/type,
select Group by > Family.

• To view the percentage of checks that you justified broken down by file/function,
select Group by > File.

Error mode removed from coding rules checking

In R2014b, the Error mode has been removed from coding rules checking. Therefore,
coding rule violations cannot stop a verification.

Compatibility Considerations

For existing coding rules files, rules having the keyword error are treated in the same
way as the keyword warning. For more information on warning, see Format of Custom
Coding Rules File.

Remote launcher and queue manager renamed

Polyspace has renamed the remote launcher and the queue manager.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/contents-of-custom-coding-rules-file.html
http://www.mathworks.com/help/releases/R2014b/codeprover/ug/contents-of-custom-coding-rules-file.html

R2014b

2-16

Previous name New Name More information

polyspace-rl-manager.exe polyspace-server-

settings.exe

Only the binary name has
changed. The interface
title, Metrics and Remote
Server Settings, is
unchanged.

polyspace-spooler.exe polyspace-job-monitor.exe

Queue Manager or Spooler Job Monitor
The binary and the
interface titles have
changed. Interface labels
have changed in the
Polyspace interface and its
plug-ins.

pslinkfun('queuemanager') pslinkfun('jobmonitor') See pslinkfun.

Compatibility Considerations

If you use the old binaries or functions, you receive a warning.

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release. Unless otherwise
noted, the binaries to use are located in MATLAB Install/polyspace/bin.

Binary name What
happens

Use instead

polyspace-automatic -orange-

tester.exe

Warning From the Polyspace environment, select Tools
> Automatic Orange Tester

polyspace-c.exe Warning polyspace-code-prover-nodesktop -

lang c

polyspace-cpp.exe Warning polyspace-code-prover-nodesktop -

lang cpp

polyspace-remote-c.exe Warning polyspace-code-prover-nodesktop -

lang c -batch

polyspace-remote-cpp.exe Warning polyspace-code-prover-nodesktop -

lang cpp -batch

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/pslinkfun.html

2-17

Binary name What
happens

Use instead

polyspace-remote.exe Warning polyspace-code-prover-nodesktop -

batch

polyspace-rl-manager.exe Warning polyspace-server-settings.exe

polyspace-spooler.exe Warning polyspace-job-monitor.exe

polyspace-ver.exe Warning polyspace-code-prover-nodesktop -ver

setup-remote-launcher.exe Warning MATLAB install/toolbox/polyspace /

psdistcomp/bin/setup-polyspace-

cluster

Import Visual Studio project being removed

The File > Import Visual Studio project will be removed in a future release. Instead,
use the Create from build system option during New Project creation. For more
information, see Trace Visual Studio Build.

http://www.mathworks.com/help/releases/R2014b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html#bt_7t4e

R2014a
Version: 9.1

New Features

Bug Fixes

Compatibility Considerations

R2014a

3-2

Automatic project setup from build systems

In R2014a, you can set up a Polyspace project from build automation scripts that you use
to build your software application. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & Compiler options.

To set up a project from your build automation scripts:

• On the DOS or UNIX command line: Use the polyspace-configure command. For
more information, see Create Project from DOS and UNIX Command Line.

• In the user interface: When creating a new project, in the Project – Properties
window, select Create from build command. In the following window, enter:

• The build command that you use.
• The directory from which you run your build command.
• Additional options. For more information, see Create Project in User Interface.

Click . In the Project Browser, you see your new Polyspace project with
the required source files, include folders, and Target & Compiler options.

• On the MATLAB command line: Use the polyspaceConfigure function. For more
information, see Create Project from MATLAB Command Line.

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects

Polyspace supports two additional dialects: Microsoft® Visual Studio® C++ 2012 and
GNU® 4.7. If your code uses language extensions from these dialects, specify the
corresponding analysis option in your configuration. From the Target & Compiler >
Dialect menu, select:

• gnu4.7 for GNU 4.7
• visual11.0 for Microsoft Visual Studio C++ 2012

For more information about these and other supported dialects, see Dialects for C or
Dialects for C++.

http://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt9_wgg
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt2wd35
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt9_wh0
http://www.mathworks.com/help/releases/R2014a/codeprover/ref/dialect.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ref/dialect-1.html

3-3

Documentation in Japanese

The Polyspace product, including the documentation, is available in Japanese.

To view the Japanese version of Polyspace Code Prover documentation, go to http://
www.mathworks.co.jp/jp/help/codeprover/. If the documentation appears in English, from
the country list beside the globe icon at the top of the page, select Japan.

Support for additional Coding Rules (MISRA C:2004 Rule 18.2, MISRA C+
+ Rule 5-0-11)

The Polyspace coding rules checker now supports two additional coding rules: MISRA C
18.2 and MISRA C++ 5-0-11.

• MISRA C 18.2 is a required rule that checks for assignments to overlapping objects.
• MISRA C++ 5-0-11 is a required rule that checks for the use of the plain char type as

anything other than storage or character values.
• MISRA C++ 5-0-12 is a required rule that checks for the use of the signed and

unsigned char types as anything other than numerical values.

For more information, see MISRA C:2004 Coding Rules or MISRA C++ Coding Rules.

Preferences file moved

In R2014a, the location of the Polyspace preferences file has been changed.

Operating
System

Location before R2014a Location in R2014a

Windows® %APPDATA%\Polyspace %APPDATA%\MathWorks\MATLAB\R2014a

\Polyspace

Linux® /home/$USER/.polyspace /home/$USER/.matlab/$RELEASE/Polyspace

For more information, see Storage of Polyspace Preferences.

Support for batch analysis security levels

When creating an MDCS server for Polyspace batch analyses, you can now add
additional security levels through the MATLAB Admin Center. Using the Metrics
and Remote Server Settings, the MDCS server is automatically set to security level

http://www.mathworks.co.jp/jp/help/codeprover/
http://www.mathworks.co.jp/jp/help/codeprover/
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/misra-c-coding-rules.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/misra-c-coding-rules-1.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/storage-of-polyspace-preferences.html

R2014a

3-4

zero. If you want additional security for your server, use the Admin Center button. The
additional security levels require authentication by user name, cluster user name and
password, or network user name and password.

For more information, see MDCS documentation.

Interactive mode for remote verification

In R2014a, you can select an additional Interactive mode for remote verification. In this
mode, when you run Polyspace Code Prover on a cluster, your local computer is tethered
to the cluster through Parallel Computing Toolbox and MATLAB Distributed Computing
Server.

To run verification in this mode

• In the user interface: On the Configuration pane, under Distributed Computing,
select Interactive.

• On the DOS or UNIX command line, append -interactive to the polyspace-
code-prover-nodesktop command.

• On the MATLAB command line, add the argument '-interactive' to the
polyspaceCodeProver function.

For more information, see Interactive.

Default text editor

In R2014a, Polyspace uses a default text editor for opening source files. The editor is:

• WordPad in Windows
• vi in Linux

You can change the text editor on the Editors tab under Options > Preferences. For
more information, see Specify Text Editor.

Results folder appearance in Project Browser

In R2014a, the results folder appears in a simplified form in the Project Browser.
Instead of a folder containing several files, the result appears as a single file.

• Format before R2014a:

http://www.mathworks.com/help/releases/R2014a/mdce/set-mjs-cluster-security.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ref/polyspacecodeprover.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ref/interactive.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/specify-text-editor.html

3-5

• Format in R2014a:

The following table lists the changes in the actions that you can perform on the results
folder.

Action 2013b 2014a

Open results. In the result folder, double-
click result file with extension
.pscp.

Double-click result file.

Open analysis options used for
result.

In the result folder, select
options.

Right-click result file and select
Open Configuration.

R2014a

3-6

Action 2013b 2014a

Open metrics page for batch
analyses if you had used the
analysis option Distributed
Computing > Add to results
repository.

In the result folder, select
Metrics Web Page.

Double-click result file.

If you had used the option
Distributed Computing >
Add to results repository,
double-clicking the results file
for the first time opens the
metrics web page instead of the
Result Manager perspective.

Open results folder in your file
browser.

Navigate to results folder.

To find results folder location,
select Options > Preferences.
View result folder location
on the Project and Results
Folder tab.

Right-click result file and
select Open Folder with File
Manager.

Results Manager improvements

• In R2014a, you can view the extent of a code block on the Source pane by clicking
either its opening or closing brace.

3-7

Note: This action does not highlight the code block if the brace itself is already
highlighted. The opening brace can be highlighted, for instance, if there is an
Unreachable code error on the code block.

• In R2014a, the Verification Statistics pane in the Project Manager and the Results
Statistics pane in the Results Manager have been renamed Dashboard.

On the Dashboard, you can obtain an overview of the results in a graphical format.
For more information, see Dashboard.

• In R2014a, on the Results Summary pane, you can distinguish between violations of
predefined coding rules such as MISRA C or C++ and custom coding rules.

http://www.mathworks.com/help/releases/R2014a/codeprover/ug/source.html#bt1btjh-1

R2014a

3-8

• The predefined rules are indicated by .
• The custom rules are indicated by .

In addition, when you click on the Check column header on the Results Summary
pane, the rules are sorted by rule number instead of alphabetically.

• In R2014a, you can double-click a variable name on the Source pane to highlight all
instances of the variable.

Simplification of coding rules checking

In R2014a, the Error mode has been removed from coding rules checking. This mode
applied only to:

• The option Custom for:

• Check MISRA C rules
• Check MISRA AC AGC rules
• Check MISRA C++ rules
• Check JSF C++ rules

• Check custom rules

The following table lists the changes that appear in coding rules checking.

Coding Rules
Feature

2013b 2014a

New file wizard
for custom
coding rules.

For each coding rule, you can select three
results:

• Error: Analysis stops if the rule is
violated.

The rule violation is displayed on the
Output Summary tab in the Project
Manager perspective.

• Warning: Analysis continues even if
the rule is violated.

For each coding rule, you can select
two results:

• On: Analysis continues even if
the rule is violated.

The rule violation is displayed on
the Results Summary pane in
the Result Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

3-9

Coding Rules
Feature

2013b 2014a

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

Format of the
custom coding
rules file.

Each line in the file must have the syntax:

rule off|error|warning #comments

For example:

MISRA configuration - Proj1

10.5 off #don't check 10.5

17.2 error

17.3 warning

Each line in the file must have the
syntax:

rule off|warning #comments

For example:

MISRA configuration - Proj1

10.5 off #don't check 10.5

17.2 warning

17.3 warning

Compatibility Considerations

For existing coding rules files that use the keyword error:

• If you run analysis from the user interface, it will be treated in the same way as the
keyword warning. The verification will not stop even if the rule is violated. The rule
violation will however be reported on the Results Summary pane.

• If you run analysis from the command line, the verification will stop if the rule is
violated.

Support for Windows 8 and Windows Server 2012

Polyspace supports installation and analysis on Windows Server® 2012 and Windows 8.

For installation instructions, see Installation, Licensing, and Activation.

http://www.mathworks.com/help/releases/R2014a/install/index.html

R2014a

3-10

Check model configuration automatically before analysis

For the Polyspace Simulink plug-in, the Check configuration feature has been
enhanced to automatically check your model configuration before analysis. In the
Polyspace pane of the Model Configuration options, select:

• On, proceed with warnings to automatically check the configuration before
analysis and continue with analysis when only warnings are found.

• On, stop for warnings to automatically check the configuration before analysis
and stop if warnings are found.

• Off to never check the configuration automatically before an analysis.

If the configuration check finds errors, Polyspace always stops the analysis.

For more information about Check configuration, see Check Simulink Model Settings.

Additional back-to-model support for Simulink plug-in

As you click the different links, the corresponding block is highlighted in the
model. Because of internal improvements, the back-to-model feature is more stable.
Additionally, support has been added for Stateflow® charts in Target Link and Linux
operating systems.

For more information about the back-to-model feature, see Identify Errors in Simulink
Models.

Function replacement in Simulink plug-in

The following functions have been replaced in the Simulink plug-in by the function
pslinkfun. These functions be removed in a future release.

Function What
Happens?

Use This Function Instead

PolyspaceAnnotation Warning pslinkfun('annotations',...)

PolySpaceGetTemplateCFGFile Warning pslinkfun('gettemplate')

PolySpaceHelp Warning pslinkfun('help')

PolySpaceEnableCOMServer Warning pslinkfun('enablebacktomodel')

http://www.mathworks.com/help/releases/R2014a/codeprover/ug/checking-simulink-model-settings.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/fixing-errors-in-simulink-model.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ug/fixing-errors-in-simulink-model.html
http://www.mathworks.com/help/releases/R2014a/codeprover/ref/pslinkfun.html

3-11

Function What
Happens?

Use This Function Instead

PolySpaceSpooler Warning pslinkfun('queuemanager')

PolySpaceViewer Warning pslinkfun('openresults',...)

PolySpaceSetTemplateCFGFile Warning pslinkfun('settemplate',...)

PolySpaceConfigure Warning pslinkfun('advancedoptions')

PolySpaceKillAnalysis Warning pslinkfun('stop')

PolySpaceMetrics Warning pslinkfun('metrics')

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release:

• polyspace-automatic-orange-tester.exe

• polyspace-c.exe

• polyspace-cpp.exe

• polyspace-modularize.exe

• polyspace-remote-c.exe

• polyspace-remote-cpp.exe

• polyspace-remote.exe

• polyspace-report-generator.exe

• polyspace-results-repository.exe

• polyspace-rl-manager.exe

• polyspace-spooler.exe

• polyspace-ver.exe

• setup-remote-launcher.exe

Improvement of floating point precision

In R2013b, Polyspace improved the precision of floating point representation. Previously,
Polyspace represented the floating point values with intervals, as seen in the tooltips.
Now, Polyspace uses a rounding method.

R2014a

3-12

For example, the verification represents float arr = 0.1; as,

• Pre-R2013b, arr = [9.9999E^-2,1.0001E-1].
• Now, arr = 0.1.

R2013b
Version: 9.0

New Features

R2013b

4-2

Proven absence of certain run-time errors in C and C++ code

Use Polyspace Code Prover to prove the absence of overflow, divide-by-zero, out-of-
bounds array access, and certain other run-time errors in source code. To verify code,
the software uses formal methods-based abstract interpretation techniques. The code
verification is static. It does not require program execution, code instrumentation, or test
cases. Before compilation and test, you can verify handwritten code, generated code, or a
combination of these two types of code.

Color-coding of run-time errors directly in code

Polyspace Code Prover uses color coding to indicate the status of code elements.

• Green — Proved to never have a run-time error.
• Red — Proved to always have a run-time error.
• Gray — Proved to be unreachable, which can indicate a functional issue.
• Orange — Unproven, and can have an error.

Errors detected include:

• Overflows, underflows, divide-by-zero, and other arithmetic errors
• Out-of-bounds array access and illegally dereferenced pointers
• Always true/false statement due to dataflow propagation
• Read access operation on uninitialized data
• Dead code
• Access to null this pointer (C++)
• Dynamic errors related to object programming, inheritance, and exception handling

(C++)
• Uninitialized class members (C++)
• Unsound type conversions

For more information, see Interpret Results.

Calculation of range information for variables, function parameters and
return values

Polyspace Code Prover calculates and displays range information associated with, for
example, variables, function parameters and return values, and operators. The displayed

http://www.mathworks.com/help/releases/R2013b/codeprover/results-understanding.html

4-3

range information represents a superset of dynamic values, which the software computes
using static methods.

For more information, see Interpret Results.

Identification of variables exceeding specified range limits

By default, Polyspace Code Prover performs a robustness verification of your code. The
verification proves that the software works under all conditions. As the verification
assumes that all data inputs are set to their full range, almost any operation on these
inputs can produce an overflow.

To prove that your code works in normal conditions, use the Data Range Specification
(DRS) feature to perform contextual verification. You can set constraints on data ranges,
and verify your code within these ranges. The use of DRS can substantially reduce the
number of orange checks in verification results.

You can use DRS to set constraints on:

• Global variables
• Input parameters for user-defined functions called by the main generator
• Return values for stub functions

For a global variable, if you specify the globalassert mode, the software generates a
warning when the variable exceeds your specified range.

For more information, see Data Range Configuration.

Quality metrics for tracking conformance to software quality objectives

You can define a quality model with reference to coding rule violations, code complexity,
and run-time errors. By observing these metrics, you can track your progress toward
predefined software quality objectives as your code evolves from the first iteration to the
final version.

By confirming the absence of certain run-time errors and measuring the rate of
improvement in code quality, Polyspace Code Prover enables developers, testers, and
project managers to produce, assess, and deliver code that is free of run-time errors.

For more information, see Quality Metrics.

http://www.mathworks.com/help/releases/R2013b/codeprover/results-understanding.html
http://www.mathworks.com/help/releases/R2013b/codeprover/data-range-configuration.html
http://www.mathworks.com/help/releases/R2013b/codeprover/index.html#quality-metrics

R2013b

4-4

Web-based dashboard providing code metrics and quality status

Polyspace Code Prover provides Polyspace Metrics, a Web-based dashboard for tracking
submitted verification jobs, reviewing progress, and viewing the quality status of your
code. Polyspace Metrics provides an integrated view of project metrics, displaying code
complexity, coding rule violations, run-time errors, and other code metrics.

For more information, see Quality Metrics.

Guided review-checking process for classifying results and run-time error
status

In the Results Manager perspective, Polyspace Code Prover provides you with several
options to organize your review process.

• You can use review methodologies to specify the number and type of checks displayed
on the Results Summary pane. With each methodology, you review only a subset of
checks.

For example, if you are reviewing verification results for the first time, select First
checks to review. The software displays all red and gray checks but only a subset of
orange checks. These orange checks are the ones most likely to be run-time errors. For
more information, see Review Checks Using Predefined Methodologies.

• You can group checks by File/Function or Check:

• Grouping by Check classifies checks by color. Within each color, this grouping
classifies checks by categories related to the origin of the check, such as Control
flow, Data flow, and Numerical.

• Grouping by File/Function classifies checks by the file where they originated.
Within each file, this grouping classifies checks by functions where they
originated.

• For C++ files, you can also group checks by Class. This grouping classifies checks
by the class definition where they originated.

For more information, see Organize Check Review Using Filters and Groups.
• You can filter checks using any of the column information criteria on the Results

Summary pane. For example, you can filter out checks that you have already
justified using the filter icon on the Justified column header. If you have applied
a filter, the column heading changes to indicate that all results are not displayed.

http://www.mathworks.com/help/releases/R2013b/codeprover/index.html#quality-metrics
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/review-checks-using-predefined-methodologies.html
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html

4-5

You can also define custom filters. For more information, see Organize Check Review
Using Filters and Groups.

• You can navigate through the Results Summary pane using the keyboard or UI
buttons. Both means of navigation respect the grouping, filters, and methodology used
to display results.

Graphical display of variable reads and writes

A Polyspace Code Prover verification generates a data dictionary with information
about global variables and the read and write access operations on these variables. You
can view this information through the Variable Access pane of the Results Manager
perspective.

For more information, see Exploring Results Manager Perspective.

Comparison with R2013a Polyspace products

Polyspace Code Prover is a single product that replaces the following R2013a products:

• Polyspace Client™ for C/C++
• Polyspace Server™ for C/C++

Polyspace Bug Finder™, which is available with the Polyspace Code Prover, incorporates
the following R2013a products:

• Polyspace Model Link™ SL
• Polyspace Model Link TL
• Polyspace UML Link™ RH

For a summary of differences and similarities in remote verification, results review and
other features and options, expand the following:

Remote verification

Category R2013a R2013b

Products required

Install:

• Polyspace Client for C/C++ on
local computer

Install:

• MATLAB, Polyspace Bug Finder,
and Parallel Computing Toolbox on
local computer.

http://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/exploring-results-manager-perspective.html

R2013b

4-6

Category R2013a R2013b

• Polyspace Server for C/C++ on
network computers, which are
configured as Queue Manager and
CPUs.

• MATLAB, Polyspace Bug Finder,
Polyspace Code Prover, and
MATLAB Distributed Computing
Server on head node of computer
cluster. For information about
setting up a cluster, see Install
Products and Choose Cluster
Configuration.

Configuring and
starting services

On the Polyspace Preferences >
Server Configuration tab:

• Under Remote configuration,
specify host computer for Queue
Manager and Polyspace Metrics
server and communication port.

• Under Metrics configuration,
specify other settings for
Polyspace Metrics.

On the Polyspace Preferences >
Server Configuration tab:

• Under MDCS cluster
configuration, specify computer
for cluster head node, which hosts
the MATLAB job scheduler (MJS).
The MJS replaces the R2013a
Polyspace Queue Manager.

• Under Metrics configuration:

• Specify host computer for
Polyspace Metrics server and
communication port.

• Specify other settings for
Polyspace Metrics.

http://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html
http://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html
http://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html

4-7

Category R2013a R2013b

In the Remote Launcher Manager
dialog box:

1 Under Common Settings,
specify Polyspace communication
port, user details, and results
folder for remote verifications.

2 Under Queue Manager
Settings, specify Queue
Manager and CPUs.

3 Under Polyspace Server
Settings, specify available
Polyspace products.

4 To start the Queue Manager and
Polyspace Metrics service, click
Start Daemon.

In the Metrics and Remote Server
Settings dialog box:

1 Under Polyspace Metrics
Settings, specify user details,
Polyspace communication port,
and results folder for remote
verifications.

2 Under Polyspace MDCS
Cluster Security Settings, you
see the following options with
default values:

• Start the Polyspace MDCE
service — Selected. The mdce
service, which is required to
manage the MJS, runs on the
MJS host computer and other
nodes of the cluster.

• MDCE service port — 27350.
• Use secure communication

– Not selected. Communication
is not encrypted. You may
want to use communication
with security. For information
about MATLAB Distributed
Computing Server cluster
security, see Cluster Security.

3 To start the Polyspace Metrics
and mdce services, click Start
Daemon.

Use the Metrics and Remote Server
Settings dialog box to start and stop
mdce services only if you configure
the MDCS head node as the Polyspace
Metrics server. Otherwise, clear the

http://www.mathworks.com/help/releases/R2013b/mdce/mjs-security.html

R2013b

4-8

Category R2013a R2013b

Start the Polyspace MDCE service
check box, and use the MDCS Admin
Center. To open the MDCS Admin
Center, run:
MATLAB_Install/toolbox/distcomp/bin/admincenter

For information about the MDCS
Admin Center, see Cluster Processes
and Profiles.

Running a remote
verification

In the Project Manager perspective:

1 On the Configuration >
Machine Configuration pane,
select the following check boxes:

• Send to Polyspace Server
• Add to results repository

— Allows viewing of results
through Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace client performs code
compilation and coding rule checking
on the local, host computer. Then
the Polyspace client submits the
verification to the Queue Manager on
your network.

In the Project Manager perspective:

1 On the Configuration >
Distributed Computing pane,
select the Batch check box. By
default, the software selects the
Add to results repository,
which enables the generation of
Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace Code Prover software
performs code compilation and
coding rule checking on the local,
host computer. Then the Parallel
Computing Toolbox client submits
the verification job to the MJS of the
MATLAB Distributed Computing
Server cluster.

Managing remote
verifications

Use the Queue Manager to monitor
and manage submitted jobs from
Polyspace clients.

On the Web, you can monitor jobs
through Polyspace Metrics. If you
have installed Polyspace Server for C/
C++ on your local computer, through
Polyspace Metrics, you can open the
Queue Manager .

Use the Queue Manager to monitor
and manage jobs submitted through
Parallel Computing Toolbox clients.

http://www.mathworks.com/help/releases/R2013b/mdce/cluster-administration.html
http://www.mathworks.com/help/releases/R2013b/mdce/cluster-administration.html

4-9

Category R2013a R2013b

Accessing results of
remote verifications

When you run a verification on a
Polyspace server, the Polyspace
software automatically downloads the
results to your local, client computer.
You can view the results in the
Results Manager perspective.
In addition, you can use the Queue
Manager to download results of
verifications submitted from other
Polyspace clients.

On the Web, use Polyspace Metrics
to view verification results stored
in results repository. If Polyspace
Client for C/C++ is installed on your
local computer, you can download
verification results. For example,
in Polyspace Metrics, clicking a cell
value in the Run-Time Checks view
opens the corresponding verification
results in the Results Manager.

On the Web, use Polyspace Metrics to
view verification results. If Polyspace
Bug Finder is installed on your
local computer, you can download
verification results. For example, in
Polyspace Metrics, clicking a Project
cell in the Runs view opens the
corresponding verification results in
the Results Manager.

Results review

Category R2013a R2013b

Results Explorer Available. Allows navigation
through checks by the file and
function where they occur.
To view, select Window >
Show/Hide View > Results
Explorer.

Removed. To navigate through
checks by file and function, on
Results Summary pane, from
the drop-down menu, select
File/Function.

Filters on the Results
Summary pane

Filters appear as icons on the
Results Summary pane. You
can filter by:

• Run-time error category
• Coding rules violated

You can filter by the information
in all the columns of the
Results Summary pane. In
addition to existing filters,
the new filtering capabilities
extend to the file, function and
line number where the checks

R2013b

4-10

Category R2013a R2013b

• Check color
• Check justification
• Check classification
• Check status

appear. You can also define your
own filters.

The filters appear as the icon
on each column header. To apply
a filter using the information in
a column:

1 Place your cursor on the
column header. The filter
icon appears.

2 Click the filter icon and
from the context menu,
clear the All box. Select the
appropriate boxes to see the
corresponding checks.

For more information, see
Organize Check Review Using
Filters and Groups.

Code Coverage Metrics In the Results Explorer
view, the software displays two
metrics for the project:

• unp — Number of
unreachable functions as
a ratio of total number of
functions

• cov — Percentage of
elementary operations
covered by verification

The unreachable procedures
are marked gray in the Results
Explorer view.

The new Results Statistics
pane displays the code coverage
metrics through the Code
covered by verification
column graph.

To see a list of unreachable
procedures, click this column
graph.

For more information, see
Results Statistics.

http://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
http://www.mathworks.com/help/releases/R2013b/codeprover/ug/exploring-results-manager-perspective.html#bt1btjh-1

4-11

Other features

Product Feature R2013a R2013b

Installation Separate installation
process for Polyspace
products

Polyspace Code Prover
software installed during
MATLAB installation
process.

Project
configuration

On host, for example,
using Polyspace Client
for C/C++ software.

On host, using Polyspace
Code Prover software.

Local verification On host, run Polyspace
Client for C/C++
verification.

Review results in
Results Manager.

On host, run Polyspace
Code Prover verification.

Review results in Results
Manager.

Export of review
comments to
Excel®, and Excel
report generation

Supported Not supported.

Line command polyspace-c ...

polyspace-cpp ...

polyspace-code-

prover-nodesktop ...

Project
configuration file
extension

project_name.cfg project_name.psprj

Results file
extension

results_name.rte results_name.pscp

Configuration
> Machine
Configuration
pane

Available Replaced by
Configuration >
Distributed Computing
pane.

Configuration >
Post Verification
pane

Available Renamed Configuration
> Advanced Settings

Polyspace Client and
Server for C/C++

goto blocks Not supported Supported

R2013b

4-12

Product Feature R2013a R2013b

Run verifications
from multiple
Polyspace
environments

Supported Not supported, produces a
license error -4,0.

Non-official
options field

Available in
Configuration
> Machine
Configuration pane

Renamed Other and
moved to Configuration
> Advanced Settings
pane

Default includes Includes specific to the
target specified.

Generic includes for C and
C++. These includes are
target independent.

Running a
verification

Code > Polyspace
> Polyspace for
Embedded Coder/
Target Link

• Verify Generated
Code

• Verify Generated
Model Reference
Code

Also right-clicking
on a subsystem and
selecting Polyspace
> Polyspace for
Embedded Coder/
Target Link

Code > Polyspace >
Verify Code Generated
for

• Selected Subsystem
• Model
• Referenced Model
• Selected Target Link

Subsystem

Also right-clicking on a
subsystem and selecting
Polyspace > Verify
Code Generated for >
Selected Subsystem /
Selected Target Link
Subsystem

Product Mode Not available. Choose between Code
Prover or Bug Finder
depending on the type of
analysis you want to run.

Polyspace Model Link
SL and TL

Settings Available. Called
Verification Settings
from

Available. Called Settings
from. Functionality the
same.

4-13

Product Feature R2013a R2013b

Open results Option Open Project
Manager and Results
Manager opened
the Polyspace Project
Manager.

Option Open results
automatically after
verification opens
Polyspace Metrics (batch
verifications) or Polyspace
Results Manager (local
verifications).

Polyspace plug-in for
Visual Studio 2010

Support for C++11
features

Partial support. Added support for:

• Lambda functions
• Rvalue references

for *this and
initialization of class
objects by rvalues

• Decltype
• Auto keyword for

multi-declarator auto
and trailing return
types

• Static assert
• Nullptr
• Extended friend

declarations
• Local and unnamed

types as template
arguments

Options

Product Option R2013a R2013b

 -code-metrics Available. Not selected
by default.

Removed. Code
complexity metrics
computed by default.

R2013b

4-14

Product Option R2013a R2013b

 -dialect Available. Default unchanged,
but new value gnu4.6
available for C and C++.

-max-processes Specify through
Machine
Configuration >
Number of processes
for multiple CPU
core systems or
command line .

Specify from command
line, or through
Advanced Settings >
Other.

-allow-language-

extensions

Available. Selected by
default.

Removed. By default,
software supports subset
of common C language
constructs and extended
keywords defined by
the C99 standard or
supported by many
compilers.

Polyspace Client and
Server for C/C++

-enum-type-

definition

Available with three
values. First value
called defined-by-
standard.

Available with three
values.

For C, first value
renamed signed-int.

For C++, first value
renamed auto-
signed-int-first.

4-15

Product Option R2013a R2013b

-scalar-

overflows-

behavior wrap-

around

Available. Not selected
by default.

Default.

This option identifies
generated code from
blocks with saturation
enabled.

However, this option
might lead to a loss of
precision. For models
without saturation, you
can choose to remove
this option.

Polyspace Model Link
SL and TL

-ignore-constant-

overflows

Available. Not selected
by default.

Default.

